INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS SOLUTIONS MANUAL FOR SECOND EDITION OF TEXT BY DAS AND FERBEL

Types and sources of radiation - Canadian Nuclear Safety

Four Forces - Ranges and Carriers - Duke University

Weak interaction - Wikipedia

Proton - Wikipedia

Large Hadron Collider (LHC), world's most powerful particle accelerator. The LHC was constructed by the European Organization for Nuclear Research in the same 27-km (17-mile) tunnel that housed its Large Electron-Positron Collider (LEP). The tunnel is circular and is located 50–175 metres (165–575 feet) below ground, on the border between France and Switzerland.

Chapter 1 INTRODUCTION TO NMR SPECTROSCOPY

A proton is a subatomic particle, symbol p or p+, with a positive electric charge of +1e elementary charge and a mass slightly less than that of a neutron. Protons and neutrons, each with masses of approximately one atomic mass unit, are jointly referred to as "nucleons" (particles present in atomic nuclei). One or more protons are present in the nucleus of every atom; they are a necessary component of all atomic nuclei.

22.02 INTRODUCTION TO APPLIED NUCLEAR PHYSICS INTRODUCTION TO NMR SPECTROSCOPY

Four forces interact with matter: the gravitational force, the electromagnetic force, which has residual effects, the weak nuclear force, and the strong nuclear force, which also has residual effects. Each of these forces reacts only on certain particles, and has its own range and force carrier, the particles that transmit the force, by interaction.
Proton - Wikipedia Basic Units and Introduction to Natural Units 1 Basic units in particle physics In particle physics, the preferred length unit is the femtometer (or fermi), where 1 fm = 10^{-15} \text{ m}. For example, the proton radius is \approx 1.0 \text{ fm}. Cross sections are typically measured in \text{ barns}, where 1 \text{ barn} = 10^{-28} \text{ m}^2.

Sub-Atomic Particles - Chemistry LibreTexts Physics of Uranium and Nuclear Energy (Updated November 2020) Nuclear fission is the main process generating nuclear energy. Radioactive decay of both fission products and transuranic elements formed in a reactor yield heat even after fission has ceased. Fission reactions may be moderated to increase fission, or unmoderated to breed further fuel.