Second edition of a widely-used textbook providing the first step into general relativity for undergraduate students with minimal mathematical background.

Covering all aspects of gravitation in a contemporary style, this advanced textbook is ideal for graduate students and researchers in all areas of theoretical physics. The 'Foundation' section develops the formalism in six chapters, and uses it in the next four chapters to discuss four key applications - spherical spacetimes, black holes, gravitational waves and cosmology. The six chapters in the 'Frontier' section describe cosmological perturbation theory, quantum fields in curved spacetime, and the Hamiltonian structure of general relativity, among several other advanced topics, some of which are covered in-depth for the first time in a textbook. The modular structure of the book allows different sections to be combined to suit a variety of courses. Over 200 exercises are included to test and develop the reader's understanding. There are also over 30 projects, which help readers make the transition from the book to their own original research.

Spacetime physics -- Physics in flat spacetime -- The mathematics of curved spacetime -- Einstein's geometric theory of gravity -- Relativistic stars -- The universe -- Gravitational collapse and black holes -- Gravitational waves -- Experimental tests of general relativity -- Frontiers

This treatment presents most of the methods for solving ordinary differential equations and systematic arrangements of more than 2,000 equations and their solutions. The material is organized so that standard equations can be easily found. Plus, the substantial number and variety of equations promises an exact equation or a sufficiently similar one. 1960 edition.

This book is written for high school and college students learning about special relativity for the first time. It will appeal to the reader who has a healthy level of enthusiasm for understanding how and why the various results of special relativity come about. All of the standard introductory topics in special relativity are covered: historical motivation, loss of simultaneity, time dilation, length contraction, velocity addition, Lorentz transformations, Minkowski diagrams, causality, Doppler effect, energy/momentum, collisions/decays, force, and 4-vectors. Additionally, the last chapter provides a brief introduction to the basic ideas of general relativity, including the equivalence principle, gravitational time dilation, and accelerating reference frames. The book features more than 100 worked-out problems in the form of examples in the text and solved problems at the end of each chapter. These problems, along with the discussions in the text, will be a valuable resource in any course on special relativity. The numerous examples also make this book ideal for self-study. Very little physics background is assumed (essentially none in the first half of the book). An intriguing aspect of special relativity is that it is challenging due to its inherent strangeness, as opposed to a heavy set of physics prerequisites. Likewise for the math prerequisite: calculus is used on a few occasions, but it is not essential to the overall flow of the book.

Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's geometric theory of relativity.

A working knowledge of Einstein's theory of general relativity is an essential tool for every physicist today. This self-contained book is an introductory text on the subject aimed at first-year graduate students, or advanced undergraduates, in physics that assumes only a basic understanding of classical Lagrangian mechanics. The mechanics problem of a point mass constrained to move without friction on a two-dimensional surface of arbitrary shape serves as a paradigm for the development of the mathematics and physics of general relativity. After reviewing special relativity, the basic principles of general relativity are presented, and the most important applications are discussed. The final special topics section guides the reader
through a few important areas of current research. This book will allow the reader to approach the more advanced texts and monographs, as well as the continual influx of fascinating new experimental results, with a deeper understanding and sense of appreciation.

"Wald's book is clearly the first textbook on general relativity with a totally modern point of view; and it succeeds very well where others are only partially successful. The book includes full discussions of many problems of current interest which are not treated in any extant book, and all these matters are considered with perception and understanding."—S. Chandrasekhar "A tour de force: lucid, straightforward, mathematically rigorous, exacting in the analysis of the theory in its physical aspect."—L. P. Hughston, Times Higher Education Supplement "Truly excellent. . . . A sophisticated text of manageable size that will probably be read by every student of relativity, astrophysics, and field theory for years to come."—James W. York, Physics Today

Student-friendly, well-illustrated textbook for advanced undergraduate and beginning graduate students in physics and mathematics.

Introduction to General Relativity and Cosmology gives undergraduate students an overview of the fundamental ideas behind the geometric theory of gravitation and spacetime. Through pointers on how to modify and generalise Einstein's theory to enhance understanding, it provides a link between standard textbook content and current research in the field. Chapters present complicated material practically and concisely, initially dealing with the mathematical foundations of the theory of relativity, in particular differential geometry. This is followed by a discussion of the Einstein field equations and their various properties. Also given is analysis of the important Schwarzschild solutions, followed by application of general relativity to cosmology. Questions with fully worked answers are provided at the end of each chapter to aid comprehension and guide learning. This pared down textbook is specifically designed for new students looking for a workable, simple presentation of some of the key theories in modern physics and mathematics.

The foundations are thoroughly developed together with the required mathematical background from differential geometry developed in Part III. The author also discusses the tests of general relativity in detail, including binary pulsars, with much space is devoted to the study of compact objects, especially to neutron stars and to the basic laws of black-hole physics. This well-structured text and reference enables readers to easily navigate through the various sections as best matches their backgrounds and perspectives, whether mathematical, physical or astronomical. Very applications oriented, the text includes very recent results, such as the supermassive black-hole in our galaxy and first double pulsar system.

INSTANT NEW YORK TIMES BESTSELLER A Science News favorite science book of 2019 As you read these words, copies of you are being created. Sean Carroll, theoretical physicist and one of this world's most celebrated writers on science, rewrites the history of 20th century physics. Already hailed as a masterpiece, Something Deeply Hidden shows for the first time that facing up to the essential puzzle of quantum mechanics utterly transforms how we think about space and time. His reconciling of quantum mechanics with Einstein's theory of relativity changes, well, everything. Most physicists haven't even recognized the uncomfortable truth: physics has been in crisis since 1927. Quantum mechanics has always had obvious gaps—which have come to be simply ignored. Science popularizers keep telling us how weird it is, how impossible it is to understand. Academics discourage students from working on the "dead end" of quantum foundations. Putting his professional reputation on the line with this audacious yet entirely reasonable book, Carroll says that the crisis can now come to an end. We just have to accept that there is more than one of us in the universe. There are many, many Sean Carrolls. Many of every one of us. Copies of you are generated thousands of times per second. The Many Worlds Theory of quantum behavior says that every time there is a quantum event, a world splits off with everything in it the same, except in that other world the quantum event didn't happen. Step-by-step in Carroll's uniquely lucid way, he tackles the major objections to this otherworldly revelation until his case is inescapably established. Rarely does a book so fully reorganize how we think about our place in the universe. We are on the threshold of a new understanding—of where we are in the cosmos, and what we are made of.

An ideal introduction to Einstein's general theory of relativity This unique textbook provides an accessible introduction to Einstein's general theory of relativity, a subject of breathtaking beauty and supreme importance in physics. With his trademark blend of wit and incisiveness, A. Zee guides readers from the fundamentals of Newtonian mechanics to the most exciting frontiers of research today, including de Sitter and anti-de Sitter spacetimes, Kaluza-Klein theory, and brane worlds. Unlike other books on Einstein gravity, this book emphasizes the action principle and group theory as guides in constructing physical theories. Zee treats various topics in a spiral style that is easy on beginners, and includes anecdotes from the history of physics that will appeal to students and experts alike. He takes a friendly approach to the required mathematics, yet does not shy away from more advanced mathematical topics such as differential forms. The extensive discussion of black holes includes rotating and extremal black holes and Hawking radiation. The ideal textbook for undergraduate and graduate students, Einstein Gravity in a Nutshell also provides an essential resource for professional physicists and is accessible to anyone familiar with classical mechanics and electromagnetism. It features numerous exercises as well as detailed appendices covering a multitude of topics not readily found elsewhere. Provides an accessible introduction to Einstein's general theory of relativity Guides readers from Newtonian mechanics to the frontiers of modern research Emphasizes symmetry and the Einstein-Hilbert action Covers topics not found in standard textbooks on Einstein gravity Includes interesting historical asides Features numerous exercises and detailed appendices Ideal for students, physicists, and scientifically minded lay readers Solutions manual (available only to teachers)
Spacetime and Geometry is an introductory textbook on general relativity, specifically aimed at students. Using a lucid style, Carroll first covers the foundations of the theory and mathematical formalism, providing an approachable introduction to what can often be an intimidating subject. Three major applications of general relativity are then discussed: black holes, perturbation theory and gravitational waves, and cosmology. Students will learn the origin of how spacetime curves (the Einstein equation) and how matter moves through it (the geodesic equation). They will learn what black holes really are, how gravitational waves are generated and detected, and the modern view of the expansion of the universe. A brief introduction to quantum field theory in curved spacetime is also included. A student familiar with this book will be ready to tackle research-level problems in gravitational physics.

This book provides an introduction to Einstein's general theory of relativity. A "physics-first" approach is adopted so that interesting applications come before the more difficult task of solving the Einstein equation. The book includes extensive coverage of cosmology, and is designed to allow readers to study the subject alone.

This 2004 textbook fills a gap in the literature on general relativity by providing the advanced student with practical tools for the computation of many physically interesting quantities. The context is provided by the mathematical theory of black holes, one of the most elegant, successful, and relevant applications of general relativity. Among the topics discussed are congruencies of timelike and null geodesics, the embedding of spacelike, timelike and null hypersurfaces in spacetime, and the Lagrangian and Hamiltonian formulations of general relativity. Although the book is self-contained, it is not meant to serve as an introduction to general relativity. Instead, it is meant to help the reader acquire advanced skills and become a competent researcher in relativity and gravitational physics. The primary readership consists of graduate students in gravitational physics. It will also be a useful reference for more seasoned researchers working in this field.

Particle on a two-dimensional surface -- Curvilinear coordinate systems -- Particle on a two-dimensional surface--revisited -- Some tensor analysis -- Special relativity -- General relativity -- Precession of perihelion -- Gravitational redshift -- Neutron stars -- Cosmology -- Gravitational radiation -- Special topics

A Princeton astrophysicist explores whether journeying to the past or future is scientifically possible in this "intriguing" volume (Neil deGrasse Tyson). It was H. G. Wells who coined the term "time machine"—but the concept of time travel, both forward and backward, has always provoked fascination and yearning. It has mostly been dismissed as an impossibility in the world of physics; yet theories posited by Einstein, and advanced by scientists including Stephen Hawking and Kip Thorne, suggest that the phenomenon could actually occur. Building on these ideas, J. Richard Gott, a professor who has written on the subject for Scientific American, Time, and other publications, describes how travel to the future is not only possible but has already happened—and contemplates whether travel to the past is also conceivable. This look at the surprising facts behind the science fiction of time travel "deserves the attention of anyone wanting wider intellectual horizons" (Booklist). "Impressively clear language. Practical tips for chrononauts on their options for travel and the contingencies to prepare for make everything sound bizarrely plausible. Gott clearly enjoys his subject and his excitement and humor are contagious; this book is a delight to read." —Publishers Weekly

The Geometry of Special Relativity provides an introduction to special relativity that encourages readers to see beyond the formulas to the deeper geometric structure. The text treats the geometry of hyperbolas as the key to understanding special relativity. This approach replaces the ubiquitous \(\gamma \) symbol of most standard treatments with the appropriate hyperbolic trigonometric functions. In most cases, this not only simplifies the appearance of the formulas, but also emphasizes their geometric content in such a way as to make them almost obvious. Furthermore, many important relations, including the famous relativistic addition formula for velocities, follow directly from the appropriate trigonometric addition formulas. The book first describes the basic physics of special relativity to set the stage for the geometric treatment that follows. It then reviews properties of ordinary two-dimensional Euclidean space, expressed in terms of the usual circular trigonometric functions, before presenting a similar treatment of two-dimensional Minkowski space, expressed in terms of hyperbolic trigonometric functions. After covering special relativity again from the geometric point of view, the text discusses standard paradoxes, applications to relativistic mechanics, the relativistic unification of electricity and magnetism, and further steps leading to Einstein's general theory of relativity. The book also briefly describes the further steps leading to Einstein's general theory of relativity and then explores applications of hyperbola geometry to non-Euclidean geometry and calculus, including a geometric construction of the derivatives of trigonometric functions and the exponential function.

Explore spectacular advances in contemporary physics with this unique celebration of the centennial of Einstein's discovery of general relativity.

An essential resource for learning about general relativity and much more, from four leading experts Important and useful to every student of relativity, this book is a unique collection of some 475 problems—with solutions—in the fields of special and general relativity, gravitation, relativistic astrophysics, and cosmology. The problems are expressed in broad physical terms to enhance their pertinence to readers with diverse backgrounds. In their solutions, the authors have attempted to convey a mode of approach to these kinds of problems, revealing
procedures that can reduce the labor of calculations while avoiding the pitfall of too much or too powerful formalism. Although well suited for individual use, the volume may also be used with one of the modern textbooks in general relativity.

Quantum Theory and Gravitation provides information pertinent to quantum theory and general relativity. This book defines the problem areas and presents specific solutions to problems in relativity or quantum theory. Organized into 17 chapters, this book starts with an overview of the concept of pregeometry wherein the geometry of space and space time are based. This text then explores the restriction to real amplitude in photon polarization experiment, which appears in the fact that the elliptical polarizations are not included as possibilities. Other chapters consider the primary role that space-time models play in the expression of physical theories. This book discusses as well the basic structure of an axiomatic model for a fully relativistic quantum theory, which consists of four axioms imposed on an operational quantum logical universe of discourse. The final chapter describes the relationships between certain areas of mathematics and the developments in theoretical physics. Physicists, mathematicians, and researchers will find this book useful.

A pithy yet deep introduction to Einstein's general theory of relativity Of the four fundamental forces of nature, gravity might be the least understood and yet the one with which we are most intimate. On Gravity combines depth with accessibility to take us on a compelling tour of Einstein's general theory of relativity. A. Zee begins with the discovery of gravity waves, then explains how gravity can be understood in comparison to other classical field theories, presents the idea of curved spacetime, and explores black holes and Hawking radiation. Zee travels as far as the theory reaches, leaving us with tantalizing hints of the unknown, from the intransigence of quantum gravity to the mysteries of dark matter. Infused with Zee's signature warmth and fresh style, On Gravity opens a unique pathway to comprehending relativity, gravity, spacetime, and the workings of the universe.

Einstein's theory of general relativity is a theory of gravity and, as in the earlier Newtonian theory, much can be learnt about the character of gravitation and its effects by investigating particular idealised examples. This book describes the basic solutions of Einstein's equations with a particular emphasis on what they mean, both geometrically and physically. Concepts such as big bang and big crunch-types of singularities, different kinds of horizons and gravitational waves, are described in the context of the particular space-times in which they naturally arise. These notions are initially introduced using the most simple and symmetric cases. Various important coordinate forms of each solution are presented, thus enabling the global structure of the corresponding space-time and its other properties to be analysed. The book is an invaluable resource both for graduate students and academic researchers working in gravitational physics.

A groundbreaking text and reference book on twenty-first-century classical physics and its applications This first-year graduate-level text and reference book covers the fundamental concepts and twenty-first-century applications of six major areas of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn't: statistical physics, optics (waves of all sorts), elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology. Growing out of a full-year course that the eminent researchers Kip Thorne and Roger Blandford taught at Caltech for almost three decades, this book is designed to broaden the training of physicists. Its six main topical sections are also designed so they can be used in separate courses, and the book provides an invaluable reference for researchers. Presents all the major fields of classical physics except three prerequisites: classical mechanics, electromagnetism, and elementary thermodynamics Elucidates the interconnections between diverse fields and explains their shared concepts and tools Focuses on fundamental concepts and modern, real-world applications Takes applications from fundamental, experimental, and applied physics; astrophysics and cosmology; geophysics, oceanography, and meteorology; biophysics and chemical physics; engineering and optical science and technology; and information science and technology Emphasizes the quantum roots of classical physics and how to use quantum techniques to elucidate classical concepts or simplify classical calculations Features hundreds of color figures, some five hundred exercises, extensive cross-references, and a detailed index An online illustration package is available

- Preliminaries - The General Theory of Relativity - Applications of Feneral Relativity - Formal Developments - Cosmology

In 1965 Penrose introduced the fundamental concept of a trapped surface, on the basis of which he proved a theorem which asserts that a spacetime containing such a surface must come to an end. The presence of a trapped surface implies, moreover, that there is a region of spacetime, the black hole, which is inaccessible to observation from infinity. Since that time a major challenge has been to find out how trapped surfaces actually form, by analyzing the dynamics of gravitational collapse. The present monograph achieves this aim by establishing the formation of trapped surfaces in pure general relativity through the focusing of gravitational waves. The theorems proved in this monograph constitute the first foray into the long-time dynamics of general relativity in the large, that is, when the initial data are no longer confined to a suitable neighborhood of trivial data. The main new method, the short pulse method, applies to general systems of Euler-Lagrange equations of hyperbolic type and provides the means to tackle problems which have hitherto seemed unapproachable. This monograph will be of interest to people working in general relativity, geometric analysis, and partial differential equations.

A presentation of general relativity as a scheme for describing the gravitational field and the equations it obeys. Starting from physical motivations, curved co-ordinates are introduced, and
then the notion of an affine connection field is added. At a later step, the metric field is added.

WINNER OF THE 2020 NOBEL PRIZE IN PHYSICS The Road to Reality is the most important and ambitious work of science for a generation. It provides nothing less than a comprehensive account of the physical universe and the essentials of its underlying mathematical theory. It assumes no particular specialist knowledge on the part of the reader, so that, for example, the early chapters give us the vital mathematical background to the physical theories explored later in the book. Roger Penrose's purpose is to describe as clearly as possible our present understanding of the universe and to convey a feeling for its deep beauty and philosophical implications, as well as its intricate logical interconnections. The Road to Reality is rarely less than challenging, but the book is leavened by vivid descriptive passages, as well as hundreds of hand-drawn diagrams. In a single work of colossal scope one of the world's greatest scientists has given us a complete and unrivalled guide to the glories of the universe that we all inhabit. 'Roger Penrose is the most important physicist to work in relativity theory except for Einstein. He is one of the very few people I've met in my life who, without reservation, I call a genius' Lee Smolin

Looks at how scientists have tested Einstein's theory during the past seventy years, and demonstrates how this theory is crucial to understanding such features of the universe as pulsars, quasars, and black holes

The authors have attempted to convey a mode of approach to these kinds of problems, revealing procedures that can reduce the labor of calculations while avoiding the pitfall of too much or too powerful formalism.

Vectors, tensors and functions -- Manifolds, vectors and differentiation -- Energy, momentum and Einstein's equations

Einstein's theory of general relativity is a cornerstone of modern physics. It also touches upon a wealth of topics that students find fascinating -- black holes, warped spacetime, gravitational waves, and cosmology. Now reissued by Cambridge University Press, this ground-breaking text helped to bring general relativity into the undergraduate curriculum, making it accessible to virtually all physics majors. One of the pioneers of the 'physics-first' approach to the subject, renowned relativist James B. Hartle, recognized that there is typically not enough time in a short introductory course for the traditional, mathematics-first, approach. In this text, he provides a fluent and accessible physics-first introduction to general relativity that begins with the essential physical applications and uses a minimum of new mathematics. This market-leading text is ideal for a one-semester course for undergraduates, with only introductory mechanics as a prerequisite.

Many students find quantum mechanics conceptually difficult when they first encounter the subject. In this book, the postulates and key applications of quantum mechanics are well illustrated by means of a carefully chosen set of problems, complete with detailed, step-by-step solutions. Beginning with a chapter on orders of magnitude, a variety of topics are then covered, including the mathematical foundations of quantum mechanics, Schrödinger's equation, angular momentum, the hydrogen atom, the harmonic oscillator, spin, time-independent and time-dependent perturbation theory, the variational method, multielectron atoms, transitions and scattering. Throughout, the physical interpretation or application of certain results is highlighted, thereby providing useful insights into a wide range of systems and phenomena. This approach will make the book invaluable to anyone taking an undergraduate course in quantum mechanics.

An essential resource for learning about general relativity and much more, from four leading experts Important and useful to every student of relativity, this book is a unique collection of some 475 problems--with solutions--in the fields of special and general relativity, gravitation, relativistic astrophysics, and cosmology. The problems are expressed in broad physical terms to enhance their pertinence to readers with diverse backgrounds. In their solutions, the authors have attempted to convey a mode of approach to these kinds of problems, revealing procedures that can reduce the labor of calculations while avoiding the pitfall of too much or too powerful formalism. Although well suited for individual use, the volume may also be used with one of the modern textbooks in general relativity.

This book invites the reader to understand our Universe, not just marvel at it. From the clock-like motions of the planets to the catastrophic collapse of a star into a black hole, gravity controls the Universe. Gravity is central to modern physics, helping to answer the deepest questions about the nature of time, the origin of the Universe and the unification of the forces of nature. Linking key experiments and observations through careful physical reasoning, the author builds the reader's insight step-by-step from simple but profound facts about gravity on Earth to the frontiers of research. Topics covered include the nature of stars and galaxies, the mysteries of dark matter and dark energy, black holes, gravitational waves, inflation and the Big Bang. Suitable for general readers and for undergraduate courses, the treatment uses only high-school level mathematics, supplemented by optional computer programs, to explain the laws of physics governing gravity.
In Topics in the Foundations of General Relativity and Newtonian Gravitation Theory, David B. Malament presents the basic logical-mathematical structure of general relativity and considers a number of special topics concerning the foundations of general relativity and its relation to Newtonian gravitation theory. These special topics include the geometrized formulation of Newtonian theory (also known as Newton-Cartan theory), the concept of rotation in general relativity, and Gödel spacetime. One of the highlights of the book is a no-go theorem that can be understood to show that there is no criterion of orbital rotation in general relativity that fully answers to our classical intuitions. Topics is intended for both students and researchers in mathematical physics and philosophy of science.